Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.

نویسندگان

  • Thorsten Feldkamp
  • Andreas Kribben
  • Nancy F Roeser
  • Ruth A Senter
  • Sarah Kemner
  • Manjeri A Venkatachalam
  • Itzhak Nissim
  • Joel M Weinberg
چکیده

Inhibition of complex I has been considered to be an important contributor to mitochondrial dysfunction in tissues subjected to ischemia-reperfusion. We have investigated the role of complex I in a severe energetic deficit that develops in kidney proximal tubules subjected to hypoxia-reoxygenation and is strongly ameliorated by supplementation with specific citric acid cycle metabolites, including succinate and the combination of -ketoglutarate plus malate. NADH: ubiquinone reductase activity in the tubules was decreased by only 26% during 60-min hypoxia and did not change further during 60-min reoxygenation. During titration of complex I activity with rotenone, progressive reduction of NAD+ to NADH was detected at >20% complex I inhibition, but substantial decreases in ATP levels and mitochondrial membrane potential did not occur until >70% inhibition. NAD+ was reduced to NADH during hypoxia, but the NADH formed was fully reoxidized during reoxygenation, consistent with the conclusion that complex I function was not limiting for recovery. Extensive degradation of cytosolic and mitochondrial NAD(H) pools occurred during either hypoxia or severe electron transport inhibition by rotenone, with patterns of metabolite accumulation consistent with catabolism by both NAD+ glycohydrolase and pyrophosphatase. This degradation was strongly blocked by alpha-ketoglutarate plus malate. The data demonstrate surprisingly little sensitivity of these cells to inhibition of complex I and high levels of resistance to development of complex I dysfunction during hypoxia-reoxygenation and indicate that events upstream of complex I are important for the energetic deficit. The work provides new insight into fundamental aspects of mitochondrial pathophysiology in proximal tubules during acute renal failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.

We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with alpha-ketoglutarate (alpha-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c...

متن کامل

Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.

Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg(2+). To better characterize the MPT in kidney proximal tubule cells and assess it...

متن کامل

Substrate Modulation of Fatty Acid Effects on Energization and Respiration of Kidney Proximal Tubules during Hypoxia/Reoxygenation

Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the ...

متن کامل

Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation.

BACKGROUND Proximal tubules subjected to hypoxia in vitro under conditions relevant to ischaemia in vivo develop an energetic deficit that is not corrected even after full reoxygenation. We have provided evidence that accumulation of nonesterified fatty acids (NEFA) is the primary reason for this energetic deficit. In this study, we have further investigated the mechanism for the NEFA-induced e...

متن کامل

Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates.

Kidney proximal tubule cells developed severe energy deficits during hypoxia/reoxygenation not attributable to cellular disruption, lack of purine precursors, the mitochondrial permeability transition, or loss of cytochrome c. Reoxygenated cells showed decreased respiration with complex I substrates, but minimal or no impairment with electron donors at complexes II and IV. This was accompanied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 286 4  شماره 

صفحات  -

تاریخ انتشار 2004